

ISIGHT

COMPUTER VISION AND ULTRASONIC SENSOR BASED SMART CANE AND GLASSES FOR VISUALLY IMPAIRED PEOPLE

Department of Electrical Engineering, Univeristy of Engineering & Technology Syed Murtaza Arshad | 2015-EE-116 Ayesha Rehman | 2015-EE-159

Ayesha Khurram | 2015-EE-101 Hadia Nadeem | 2015-EE-052

Bring vision to life

ABSTRACT

One of the major physical incapabilities around the globe is visual impairment. To provide assistance to these people, we intend to design and implement state-of-the-art product based on technology. Our cutting-edge project consists of a smart cane based on ultrasonic sensors and smart glasses with camera, providing obstacle detection, navigation, obiect identification and facial recognition.

OBJECTIVE

We aim to deliver a product having the following features:

- Detect front, right and left obstacles and perform navigation. Furthermore, estimate the height of the front obstacle.
- · Guide and help the user in detecting staircase and potholes.
- Help in smoke and water detection to keep the user safe from hazards.
- · Capable of doing facial recognition and object identification.

>>>

ACKNOWLEDGEMENTS

Dr. Ubaid-Ullah-Fayyaz | Supervisor

Ali Hassan | Legally Blind Worker in

Dr. Kashif Javed | Co-Supervisor

>>>>

Data Acquisition

Data for navigation is acquitted using five ultrasonic sensors [1]

Rpi 8MP Camera is used to capture live frames of surroundings [2]

>>>>

SUMMARY

The product proposed is an attempt to

make the challenging life of blind people

a bit less challenging and reduce their

dependency on others by guiding them in daily-life tasks. It will also have a great

social and economic impact on the soci-

ety, upgrading life of millions.

Microcontroller **Processing**

The readings from ultrasonic sensors and frames from camera processed by Raspberry Pi 3B+. An interrupt has been configured to switch between navigation and vision mode via a toggle button

METHODOLOGY

Processing Algorithms

In navigation mode, the output is generated using decision-tree machine learning algo-

In vision mode, trained models for faces and objects are used to detect required feature

UET Office

Audio & Haptic Output

- Navigation
- Staircase Detection
- Height and Depth

- Face Detection
- Face Recognition

VERSION 1 Obstacle Detection ecognition and audio feedback Featured on Waqt News.

Response Time: 0.5s Accurav: 99%

Response Time: 0.5s

Accuracy: 95 %

Accuracy: 88%

ACHIEVED

- Added staircase detection
- Thesis Submission

- REFERENCES
- [1] AS. Sharma, M. Gupta, A. Kumar, M. Tripathi, and M. S. Gaur, "Multiple distance sensors based smart stick for visually impaired people," in 2017 IEEE 7th Annual Computing and Communication Workshop and Conference (CCWC), Jan 2017, pp. 1-5.
- [2] J. Bai, S. Lian, Z. Liu, K. Wang, and D. Liu, \Smart guiding glasses for visually impaired people in indoor environment," IEEE Transactions on Consumer Electronics, vol. 63, no. 3, pp. 258-266, August 2017.

FEATURES AND RESULTS

- Response Time: 0.1s
- Response Time < 0.1s
- Accuray: 99%
- >>>>
- Response Time: 1.4s Range: 90 Objects
 - Response Time: 0.1s Accuray: 91%

- Endorsed by LRBT